色综合色狠狠天天综合色,久久久久亚洲av成人人电影,免费精品99久久国产综合精品,精品人妻码一区二区三区

Dongguan Weize Hardware Co., Ltd

Elaborate production, sincere serviceFocus on the development and production of carbide rotary files 18922987188/0769-27221035

Dynamic

More

Dynamic

聯(lián)系我們

Mr. Lin: 18922987188

Landline: 0769-27221035

Fax: 0769-28055429

Email: sales1@wizzardtools.com

Address: Building 1, Wansheng Science and 

Technology Park, No. 15, Qinghua Road, Nancheng 

Street, Dongguan City, Guangdong Province

What are the causes and mitigation measures of tool wear?

Time: 2021-12-30 16:57:30  View: 1060

Abrasives wear hard spots such as carbides, oxides, nitrides and debris in the workpiece material, which draw grooves on the tool surface, resulting in tool wear. Its wear strength (i.e. wear speed) depends on the hardness difference between the hard point and the tool. The measures to reduce wear can be heat treatment to reduce and soften the hard points contained in the workpiece material, or select the tool material with high hardness and fine grain. Abrasive wear is often the main reason for the wear of low-speed cutting tools.

Bonding wear due to the bonding (cold welding) phenomenon at the knife chip interface, when the bonding part flows and separates along the front with the chip, if the bonding strength is low, it will shear and separate along the bonding surface; If the bond strength is high, the shear occurs outside the joint surface. Generally, most of the shear occurs in the chip bottom layer. However, due to the microstructure defects of the tool material, or due to high-temperature softening, fatigue and other reasons, the shear may also occur in the surface layer of the tool material, resulting in the particles on the surface layer of the tool being torn away. When the particle size is small, it is called bonding wear, and when the particle size is large, it is called spalling. The appearance feature of bonded wear surface is rough surface. The influencing factors of bond wear are complex. The strength ratio of the contact area between tool material and workpiece material affects the bonding wear strength to a great extent, and their hardness ratio sometimes has a decisive influence. The tear strength of hundreds of small particles is quite related to the tear strength of more particles. The higher the hardness of the tool, the finer the grains and the smaller the size of the falling particles. Increasing the stiffness of the system and reducing the vibration will help to avoid the falling off of large particles.

3-diffusion wear two metals in contact with each other. Due to the concentration difference of chemical components, the atoms at the interface will diffuse each other,

However, the diffusion is very slow at room temperature and can be increased thousands of times at high temperature. In high-speed cutting, the contact area between the tool and the chip and the machining surface has high temperature, high pressure, strong adhesion and large plastic deformation. Some elements (iron, carbon, cobalt and tungsten) diffuse faster, which changes the chemical composition and microstructure of the metal on the surface of the tool, reduces the strength and increases the brittleness, thus aggravating the wear of the tool. The tool surface quotient of diffusion wear is almost as smooth as polishing. For cemented carbide tools, Co, C and W in the tool surface diffuse to the workpiece material, II; Fe in the part material diffuses to the tool, decarburizes and depleted tungsten on the surface of the tool, and generates intermediate compounds with low strength and high brittleness, which aggravates the wear of the tool. Because the bonding of tic is stronger than that of WC, YT cemented carbide has strong diffusion wear resistance. Diffusion wear is a phenomenon occurring at high temperature. Its main influencing factors are the chemical properties, relative moving speed and temperature of tool materials. The chemical properties of the combination of tool materials and workpiece materials have a greater impact than the mechanical properties, but the temperature plays a decisive role. YG alloy diffuses obviously at about 800 ° C and YT alloy at about 1000 ° C. after that, the diffusion rate increases by one time for every 20 ° C increase in temperature. The measure to reduce tool wear is to reasonably select the tool material to make it have good chemical stability combined with the workpiece material; Reasonably select cutting parameters and reduce cutting temperature. It should also be mentioned that when the temperature increases from low to high, the bonding wear does not always increase. Each combination of tool material and workpiece material has an optimal cutting temperature.

4. Chemical wear at a certain cutting temperature, the tool material reacts with some elements in the surrounding medium or cutting fluid to form compounds to accelerate tool wear, which is called chemical wear. For example, oxygen in the air and chlorine and sulfur in extreme pressure cutting fluid react with tool materials to accelerate tool wear.

In addition to the above four causes of tool wear, there are also fatigue damage and thermoelectric wear. The above four reasons can be divided into two categories. Abrasive wear and bonding wear belong to mechanical wear. They exist under various cutting conditions and are the basic cause of tool wear, but they are often the main cause of tool wear in low speed cutting.

Diffusion wear and chemical wear belong to thermal wear, which is the reason for tool accelerated wear, that is, the main reason for tool wear in high-speed cutting. However, there is no strict boundary between them, and they affect each other. Under certain cutting conditions, some wear may play a leading role. The measures to reduce wear and tear also need to find out the main causes according to the specific situation in order to suit the remedy to the case. However, cutting temperature or cutting speed closely related to it has a decisive effect on wear. Figure 3-27 shows the relationship between various wear strength ratios and cutting speed.


在线观看片免费视频无码| 精品人妻伦一二三区久久| 国产精品亚洲AV三区| 亚洲欧美国产日产综合不卡| 国产真实乱对白精彩久久老熟妇女 | 欧美综合天天夜夜久久| 又粗又爽高潮午夜免费视频| 成人片黄网站a毛片免费| 99久久人妻精品免费二区| 亚洲的天堂av无码| 日韩欧洲在线高清一区| 国产精品18久久久久久麻辣| 欧美另类69xxxx| 国产女人高潮抽搐喷水视频| 最新亚洲卡一卡二卡三新区| 免费无遮挡无码永久视频| 都市激情校园春色| 欧美网站免费观看在线| 成人国产精品免费视频| 中文字幕在线免费看线人| 日韩欧美亚洲综合久久| AV无码国产在线观看岛国| 8ⅹ8x擦拨擦拨成人免费视频| 2020亚洲欧美国产日韩| 一区二区三区AV高清免费波多| 久久久久亚洲AV成人人电影| 欧美成人看片一区二区三区尤物| 精品久久久久久国产潘金莲| 亚洲精品久久无码2021| 免费人成视频x8x8入口| 少妇人妻系列1~100| 精品亚洲AV无码区最新| 国产大学生粉嫩无套流白浆| 性欧美老妇另类xxxx| 九九在线精品国产| 日韩欧美人妻一区二区三区| 久久人人妻人人做人人爽| 国产精品狼人久久久久影院| 国产精品久久久久秋霞鲁丝| 日日摸天天摸97狠狠婷婷| 亚洲av第一页国产精品|